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A variational approach is used to develop a robust numerical procedure for solving the nonlinear Poisson-
Boltzmann equation. Following Maggs and Rossetto �Phys. Rev. Lett. 88, 196402 �2002��, we construct an
appropriate constrained free energy functional such that its Euler-Lagrange equations are equivalent to the
Poisson-Boltzmann equation. This is a formulation that searches for a true minimum in function space, in
contrast to previous variational approaches that rather searched for a saddle point. We then develop, implement,
and test an algorithm for its numerical minimization, which is quite simple and unconditionally stable. The
analytic solution for planar geometry is used for validation. Some results are presented for a charged colloidal
sphere surrounded by counterions and optimizations based upon fast Fourier transforms and hierarchical
preconditioning are briefly discussed.
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I. INTRODUCTION

In many soft-matter and biological systems electrostatic
interactions have a strong influence on the physical behavior.
A typical example is charge-stabilized colloidal dispersions
�1�, whose structure is mainly determined by the interplay
between van der Waals attraction and electrostatic repulsion.
A simplifying feature is the fact that it is often sufficient to
describe the structure of the “cloud” of surrounding ions
�counterions and salt ions� just in terms of mean-field theory,
in particular if the ions are monovalent. At the center of this
theory is the well-known Poisson-Boltzmann equation,
which, from the mathematical point of view, is a nonlinear
partial differential equation. Analytical work in this field has
been mainly confined to the linearized �Debye-Hückel� ver-
sion, which, however, is often insufficient, in particular near
strongly charged objects. This has prompted efforts to de-
velop methods to solve the equation numerically, ideally in
three dimensions, and without restrictions on the underlying
geometry or spatial symmetry. These are usually based on
standard finite-difference �2� or finite-element �3� techniques
�for a recent review see Ref. �4�� and have meanwhile
reached a substantial degree of sophistication and complex-
ity.

Recently, however, Maggs and Rossetto �5� has put for-
ward a completely unique approach to electrostatics in soft-
matter research, which bears a certain similarity to lattice
gauge theories �6�. The central idea is to use the electric field
E instead of the electrostatic potential � as the quantity on
which the algorithm operates and to view Gauss’ law
�� ·E=� as a constraint for the field configurations. On a
lattice, it is then easy to construct an electric field �E� con-
figuration which satisfies Gauss’ law for a given �arbitrary�
charge density �. The hard part is rather the transversal part
of the field, which should satisfy ��E=0, but initially does
not �unless one uses a sophisticated initialization procedure
based upon solving the Poisson equation�. This transversal
degree of freedom can then be removed by local relaxations
�this is the approach taken in the present paper�, or integrated
out by performing a Monte Carlo �5,7� or molecular-
dynamics �8–10� simulation on the overall system. A crucial

aspect of the method is to locally update both � and E si-
multaneously in a way that Gauss’ law is still satisfied after
the update, i.e., the “constraint surface” is never left.

The original Maggs approach is based upon a system of
discrete charges whose statistical physics is treated in a con-
sistent way. However, it is also possible to apply this to the
mean-field version of the theory, i.e., the Poisson-Boltzmann
equation. The purpose of the present paper is to outline how
this can be done in practice. In Sec. II we derive the method
by reformulating the Poisson-Boltzmann theory in terms of a
free-energy functional, which is minimized by using a
Maggs-type algorithm. In contrast to previous formulations,
this functional provides a true minimum, and therefore the
procedure is very straightforward and simple, uncondition-
ally stable, and has a rather modest storage requirement
which scales only linearly with the number of grid points. In
terms of computational speed, the method can probably not
yet compete with the existing packages; however, it is rea-
sonable to assume that more advanced versions that combine
the basic methodology with acceleration techniques such as
adaptive mesh refinement and/or unstructured meshes may
become a very useful tool. Section III presents numerical
results obtained with our current simple implementation,
while Sec. IV discusses optimizations based upon fast Fou-
rier transforms and hierarchical preconditioners. Finally, Sec.
V finishes with some concluding remarks.

II. DERIVATION OF THE ALGORITHM

A. Poisson-Boltzmann equation

Consider a system of fixed charges, with total charge Ze
�e�0 denotes the elementary charge� dispersed in a solvent
with dielectric constant �. The system is confined to a three-
dimensional finite domain of volume V. The charges can be
distributed either in macroscopic particles or in any other
kind of boundary. Furthermore, the domain contains counte-
rions of total charge −Ze such that the system as a whole is
charge neutral. The total number of counterions is N0, such
that Z=−z0N0, where z0 is their valence. Furthermore, the
presence of other ionic species �salt ions� is allowed if they
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satisfy charge neutrality, i.e., if ���1z�N�=0, where z� is the
valence of the ionic species � and N� is its number.

The continuum theory provides equations for the concen-
trations �particle number densities� c��r� of each ionic spe-
cies � and the electrostatic potential ��r�. In the stationary
regime �no time dependence� and in thermal equilibrium
characterized by the thermal energy kBT, they take the form
�1�

kBT � ln c� + ez� � � = 0, �1�

��2� + �
�

ez�c� = 0. �2�

The first equation is the equilibrium version of the Nernst-
Planck equation, which balances the diffusion current of
ionic species � against the drift caused by the electric field
E=−��. The second equation is the Poisson equation, taking
into account all ionic species as a source term, while the
fixed charges appear as boundary conditions. The total num-
ber of particles is obtained by integrating the concentration
over the whole domain:

N� = �
V

c�dV , �3�

and the charge neutrality may then be expressed by

�
�

z��
V

c�dV = − Z , �4�

with

�
��1

z��
V

c�dV = 0. �5�

By integrating Eq. �1� one obtains

c� = A� exp�−
ez��

kBT
� , �6�

where the integration constant A� has the dimension of a
concentration, and, for normalization reasons, must have the
value

A� =
N�

�
V

exp�− ez��/kBT�dV

. �7�

Inserting this result into Eq. �2�, one obtains the Poisson-
Boltzmann equation

��2� + �
�

ez�A� exp�−
ez��

kBT
� = 0, �8�

which is an equation for � only. However, for the algorithm
to be discussed below, it will be advantageous to rather con-
sider the equivalent coupled set of equations �Eqs. �1� and
�2��.

B. Reduced units

The Poisson-Boltzmann equations can be rewritten in
terms of nondimensional quantities, i.e., in reduced units.

The argument of the exponential in Eq. �8� suggests the most
natural way of rescaling the potential:

�� =
e�

kBT
, �9�

i.e., the reduced potential is the electrostatic energy of an
elementary charge in units of the thermal energy. This leads
to

� ln c� + z� � �� = 0, �10�

�2�� + 4	lB�
�

z�c� = 0, �11�

where lB=e2 / �4	�kBT� is the Bjerrum length. Introducing a
parameter 
−1 as a characteristic length scale �see below�, the
gradient operator is rescaled via �=
��. This allows writing
the equations in the nondimensional form

�� ln c�� + z����� = 0, �12�

��2�� + �
�

z�c�� = 0, �13�

where

c�� = 4	lB
−2c� �14�

is the reduced concentration. In terms of the electric field
E�=−����, the equations are

�� ln c�� = z�E�, �15�

�� · E� = �
�

z�c�� , �16�

�� � E� = 0. �17�

The normalization condition for the amount of species � is
transformed to

�
V�

c��dV� = N�� �18�

with

N�� = 4	lB
N�. �19�

The choice of the parameter 
 is completely immaterial
for the mathematical formulation of the problem. It is only
important to map the numerical results back onto a physical
system, and therefore a matter of convention. For many ap-
plications, the choice


2 = 4	lB

�
�

z�
2N�

V
�20�

turns out to be quite useful: this is the natural screening
parameter in the finite-volume version of linearized Poisson-
Boltzmann theory �therefore it also appears in the corre-
sponding treatment of asymmetric electrolytes �11��. In the
case of only one monovalent ionic species �the counterions
�=0�, this reduces to
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2 = 4	lB

	Z	
V

. �21�

It should be noted that in this case N0�=V�.
From now on, we will be concerned with the problem of

numerically solving the reduced set Eqs. �15�–�17�. In what
follows, the primes will be omitted, with the understanding
that all quantities �including N� and V� are given in reduced
units.

C. Variational approach

Following the ideas of Maggs and Rosetto �5�, the
Poisson-Boltzmann equation can be reformulated as a con-
strained variational problem, where a free-energy functional
is minimized. This functional is constructed such that its
Euler-Lagrange equations are equivalent to Eqs. �15�–�17�.
Its form is

F = �
V

fdV , �22�

f =
1

2
E2 + �

�

c� ln c� − ��� · E − �
�

z�c��
− �

�

���c� −
N�

V
� . �23�

The first term corresponds to the electrostatic energy and the
second to the entropy. Gauss’ law and the mass normaliza-
tion conditions are included as constraints via Lagrange mul-
tipliers: the field ��r� is the electrostatic potential, while the
numbers �� are the chemical potentials of the species �.

The Euler-Lagrange equations for this variational problem
will be derived next. Variation with respect to � and �� just
recovers the constraint equations

� · E = �
�

z�c�, �24�

�
V

c�dV = N�. �25�

Variation with respect to c� results in

ln c� + 1 + �z� − �� = 0, �26�

while variation with respect to E yields

E = − �� . �27�

The dependence on the unknown Lagrange multipliers is re-
moved by taking the gradient of Eq. �26� and the curl of Eq.
�27� to obtain

� ln c� + z� � � = 0, �28�

� � E = 0 . �29�

Finally, inserting Eq. �27� into Eq. �28� leads to

� ln c� = z�E . �30�

In summary, the derived equations �Eqs. �24�, �29�, and �30��
are the desired set—in other words, the solution of the mini-
mization problem is identical to the solution of the Poisson-
Boltzmann equation.

In this context, one should make a few important obser-
vations. Firstly, we note that solving the Euler-Lagrange
equations will provide one and only one solution: it has been
proven �by variational methods� that the Poisson-Boltzmann
equation has one unique solution �12,13�. Secondly, it is easy
to show that the solution is indeed a local minimum: by
writing

E = E�0� + �E , �31�

c� = c�
�0� + �c�, �32�

where E�0� and c�
�0� form the solution of the problem, and �E

and �c� are small deviations which satisfy the constraints,
i.e.,

� · �E = �
�

z��c�, �33�

�
V

�c�dV = 0, �34�

one finds

F = �
V

1

2
E�0�2 + �

�

c�
�0� ln c�

�0��dV

+ �
V

 1

2
�E2 +

1

2�
�

�c�
2

c�
�0� �dV + O��c3� , �35�

i.e., small deviations from the solution will always increase
the functional. Together with the uniqueness, this shows that
the functional has one and only one minimum, which corre-
sponds to the solution of the Poisson-Boltzmann problem.
Therefore, a procedure that relaxes all degrees of freedom of
the functional such that it is systematically decreased, while
staying on the constraint surface, will ultimately run into the
one and only minimum of the free-energy landscape. The
iterative procedure may be slow and hampered by small ei-
genvalues of the Hessian at the minimum, but such problems
can be kept under control by careful convergence checks and
variation in the number of iterations. A simple algorithm that
initializes the system on the constraint surface, keeps it there,
and systematically decreases F by local updates of all non-
constrained degrees of freedom will be outlined in Sec. II E.
Since the constraints are always satisfied during the proce-
dure, the Lagrange-multiplier terms in the functional may be
omitted such that it is simplified to

F = �
V

1

2
E2 + �

�

c� ln c��dV . �36�

It should also be noted that previous approaches that were
also based upon a free-energy functional �see, e.g., Ref. �14��
did not truly search for a minimum, but rather for a saddle
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point. These methods were not based upon a functional that
involves the electric field, but rather one that depends on the
electrostatic potential,

F = �
V

fdV , �37�

f = −
1

2
����2 + �

�

c� ln c� + ��
�

z�c� − �
�

���c� −
N�

V
� ,

�38�

where the �� are, as before, the Lagrange multipliers corre-
sponding to the mass normalization conditions. However, in
contrast to its meaning in Eqs. �22� and �23�, � is here not a
Lagrange multiplier but rather a degree of freedom. It is
straightforward to show that the Euler-Lagrange equations of
this problem are equivalent to the Poisson-Boltzmann equa-
tion. To show that this solution is indeed not a minimum but
rather a saddle point, one again decomposes � and c� into
the solution plus small deviations,

� = ��0� + �� , �39�

c� = c�
�0� + �c�, �40�

with

�
V

�c�dV = 0. �41�

This yields

F = �
V

�f0 + f2�dV + O��c3� , �42�

f0 = −
1

2
����0��2 + �

�

c�
�0� ln c�

�0� + ��0��
�

z�c�
�0�, �43�

f2 = −
1

2
�����2 +

1

2�
�

�c�
2

c�
�0� + ���

�

z��c�, �44�

i.e., the quadratic form of the deviations is not positive defi-
nite. It is natural to suspect that this lack of positive definite-
ness causes various numerical difficulties in terms of stabil-
ity, which therefore are intrinsically absent in the new
formulation.

D. Discretization

The computational domain is a rectangular parallelepiped
of size l1� l2� l3 with periodic boundary conditions. This
box is discretized by a simple orthorhombic �usually cubic�
lattice with sites r0 and lattice spacings xi, i=1,2 ,3 enu-
merating the Cartesian directions. The volume of a unit cell
is thus V=x1x2x3. The concentrations c� are variables
on the sites, while the electric field is associated with the
links. The positions of the concentration fields are the vectors

r0�n� = �x1n1,x2n2,x3n3� , �45�

where ni are integers. The field E1 is located at the positions

r1�n� = „x1�n1 + 1/2�,x2n2,x3n3… . �46�

Similarly, the positions for E2 and E3 are

r2�n� = „x1n1,x2�n2 + 1/2�,x3n3… , �47�

r3�n� = „x1n1,x2n2,x3�n3 + 1/2�… , �48�

respectively. Furthermore, it is useful to define

r1��n� = „x1�n1 − 1/2�,x2n2,x3n3… , �49�

r2��n� = „x1n1,x2�n2 − 1/2�,x3n3… , �50�

r3��n� = „x1n1,x2n2,x3�n3 − 1/2�… . �51�

These definitions allow to approximate the functional by

F

V
=

1

2�
n

�
i=1

3

Ei
2
„ri�n�… + �

�
�
n

c�„r0�n�…ln c�„r0�n�… ,

�52�

and to also discretize the divergence operator in a straight-
forward way:

�� · E�„r0�n�… = �
i=1

3
1

xi
�Ei„ri�n�… − Ei„ri��n�…� . �53�

Gauss’ law then reads

�
i=1

3
1

xi
�Ei„ri�n�… − Ei„ri��n�…� = �

�

z�c�„r0�n�… . �54�

Introducing fluxes via

�1 = E1x2x3, �55�

�2 = E2x3x1, �56�

�3 = E3x1x2, �57�

this is rewritten as

�
i=1

3

��i„ri�n�� − �i„ri��n�…� = V�
�

z�c�„r0�n�… . �58�

Finally, the normalization condition for the amount of ionic
species � is discretized as

�
n

c�„r0�n�… =
N�

V
. �59�

E. Algorithm

The numerical minimization procedure starts from some
configuration of the discretized fields c� and E which satis-
fies all the constraints, i.e., the normalization conditions for
the ions, plus Gauss’ law. The algorithm then performs suc-
cessive local changes in the electric fields and the concentra-
tions analogously to the Monte Carlo moves of Maggs and
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Rosetto �5�. These moves have the big advantage that they
rigorously conserve the constraints. In contrast to Ref. �5�,
however, the moves are not stochastic, but rather determin-
istic, and constructed in such a way that they decrease the
functional, and do this optimally. Since the free-energy land-
scape of this problem has a simple structure �as discussed in
Sec. II C�, the procedure relaxes the fields into the one and
only minimum, which is the solution of the Poisson-
Boltzmann equation.

The algorithm can be summarized as follows:
�1� Distribute the fixed charges.
�2� Classify the grid points.
�3� Distribute the ionic species uniformly in the moveable

nodes.
�4� Initialize the electric field.
�5� Perform the field moves for all the plaquettes �smallest

closed loops� in the grid.
�6� Perform the concentration moves for all pairs of adja-

cent moveable nodes.
�7� Check if the changes in the functional caused by steps

5 and 6 are less than a given tolerance: if yes, then stop,
otherwise, return to step 5.

In the beginning, fixed charges and ionic species must be
distributed over the grid. Fixed charges are usually associ-
ated with surfaces. Therefore elements of surface charge den-
sity must be mapped onto elements of volume charge den-
sity, so that they can be associated with some of the nodes.
These nodes are then marked as “fixed” and no particles can
enter or leave them after initialization. Further nodes may be
marked as fixed if they are known to be empty �for example,
if they represent the interior of a particle�. The nodes repre-
senting the volume where ions can move are marked as
“moveable.” Initially, each ionic species is uniformly distrib-
uted over the moveable nodes. Choosing the correct amount
of charges then automatically results in charge neutrality of
the overall system.

The next step consists in initializing the electric field so
that it satisfies Gauss’ law for the initial charge distribution.
One possibility is to solve the Poisson equation with some
numerical method. This needs to be done only once, in the
initialization. An alternative, based on charge neutrality, is to
initialize each component by means of a recursion over the
spatial dimensions �10�, which is equivalent to applying
Gauss’ law to linear chains of nodes. First the lattice is de-
composed into a set of planes perpendicular to the x1 axis
and it is required that E1 takes the same identical value for all
links with identical x1 coordinate. Then in one �arbitrary�
plane of links we set E1=0. Starting from there, we can then
calculate E1 step by step in the subsequent planes of links,
where the change in E1 is given by the plane-averaged
charge density between the links. Assuming that the proce-
dure is started at the charge plane x1=0, it reads

E1�− 0.5x1,n2x2,n3x3� = 0, �60�

E1„�n1 + 0.5�x1,n2x2,n3x3…

= E1„�n1 − 0.5�x1,n2x2,n3x3…

+ x1���n1x1� , �61�

where �� is the plane-averaged charge density at x1=n1x1.
Charge neutrality combined with the periodic boundary con-
ditions ensures that this procedure will give consistent results
after closing the one-dimensional loop. Then each plane is
decomposed into a sequence of lines, perpendicular to the x1
and x2 axes, and the analogous procedure is applied to obtain
the field in x2 direction. The charges which occur here are the
line averages, where, however, the plane averages have been
subtracted �the latter have already been taken into account
via E1�. Finally, the lines are decomposed into sites and E3 is
determined from the remaining charges where both line and
plane averages have been subtracted.

For field changes, elementary closed loops on the faces of
the unit cells �plaquettes� are considered. For the orthorhom-
bic lattice, these are comprised of four nodes and respective
links, such that each node is connected to two plaquette
links. Now, these four fields are modified in such a way that
the flux on each link is changed by the same amount �taking
into account the orientation along the closed loop�. There-
fore, Gauss’ law will still be satisfied after that move since at
every node there will be some more flux entering but also the
same amount of flux leaving. Let us, for example, consider a
plaquette perpendicular to the x3 axis, with a sequence of
fields E1, E2�, E1�, and E2 along the loop, where E1 and E1� are
positive if the field points in positive x1 direction �and analo-
gous for E2 and E2��. Then the field updates are given by

E1 → E1 + �E1, �62�

E2� → E2� + �E2�, �63�

E1� → E1� + �E1�, �64�

E2 → E2 + �E2, �65�

or, in terms of fluxes,

��1 = x2x3�E1 = �� , �66�

��2� = x1x3�E2� = �� , �67�

��1� = x2x3�E1� = − �� , �68�

��2 = x1x3�E2 = − �� , �69�

where the parameter �� can be chosen arbitrarily without
violating Gauss’ law. The associated change in the functional
is given by

�FV = ��x1�2 + �x2�2�����2 + Vx1�E1 − E1����

+ Vx2�E2 − E2���� , �70�

which is minimized for

�� =
1

2

V

�x1�2 + �x2�2 �x1�E1� − E1� − x2�E2� − E2�� .

�71�

This yields the optimal values for the field changes.
For concentration moves between two adjacent nodes

�connected by a single link�, Gauss’ law is also conserved if
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the electric flux is updated accordingly. Suppose that before
the move the two adjacent nodes r0

�A� and r0
�B� have, respec-

tively, concentrations c�A� and c�B� of some ionic species with
valence z. Without loss of generality we may assume that
node B has a larger index value than node A. The electric
flux from node A to node B is then given by �V /l�E,
where l is the length of the link and E the field on it. Now,
a certain �positive or negative� amount �c is moved from A
to B, i.e.,

c�A� → c�A� − �c , �72�

c�B� → c�B� + �c . �73�

Gauss’ law tells us that the flux should change by −Vz�c
and this is the case for

�E = − lz�c . �74�

The resulting change in the functional is given by

F

V
= �E +

1

2
�E��E + c�A� ln�1 −

�c

c�A�� + c�B� ln�1 +
�c

c�B��
− �c ln

c�A� − �c

c�B� + �c
. �75�

In order to find the optimal value for �c, we minimize this
expression. The result is a nonlinear equation,

�c =
c�A� − c�B� exp�− zl�E − zl�c��

1 + exp�− zl�E − zl�c��
, �76�

which must be solved numerically. By introducing

c+ =
1

2
�c�A� + c�B�� , �77�

c− =
1

2
�c�A� − c�B�� , �78�

� =
1

2
zl�zl�c − E� , �79�

the equation is transformed to

tanh � +
2

�zl�2c+
� +

E

zlc+
−

c−

c+
= 0, �80�

which shows that it has exactly one solution �the slope of the
left-hand side is always positive�. Since −1� tanh ��1, the
solution will satisfy the condition

− 1 � −
2

�zl�2c+
� −

E

zlc+
+

c−

c+
� 1, �81�

which is equivalent to c�A�−�c�0, c�B�+�c�0, such that �c
will be in the physically admissible range. Finally, the shape
of the left-hand side guarantees that a Newton iteration start-
ing at �=0 will always converge; hence, this rapid procedure
was implemented.

III. NUMERICAL RESULTS

In this section, the feasibility of the present approach is
demonstrated by two numerical examples. The choice of pa-
rameters is inspired by previous computer simulations on
electrokinetics done in our group �15–17�. We therefore
quote them here in unscaled “physical” units, where �0 de-
notes our elementary length scale �the Lennard-Jones diam-
eter in our simulations�. All calculations are done with a
Bjerrum length lB=1.3�0. The fixed charge distribution
�boundary condition� consists of positive charges only, while
there is only one ionic species, the monovalent counterions
with valence z=−1. The resulting data are also given in
“physical” units.

A. Double plane with counterions

Consider that the fixed charges are distributed in two in-
finite parallel plates, perpendicular to the x axis, placed at
x=−a and x=a. The surface charge density in each plate is �.
Furthermore, suppose that there are no salt ions and that the
counterions �of valence z, concentration c�r�� are distributed
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FIG. 1. Profile of the counterion concentration along the x axis
for various grid resolutions as indicated by the legends.
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FIG. 2. Relative errors of the concentration profiles for different
grid resolutions as indicated.
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in the region between the planes. Charge neutrality is given
by

�
S

�ds + �
V

zc�r�dV = 0. �82�

For this case, the problem is one dimensional and its ana-
lytical solution is well known �18�. Therefore, it is ideally
suited to test the algorithm. In reduced units, the Poisson-
Boltzmann equation is

d2�

dx2 = − Az exp�− z�� = −
d

d�
�− A exp�− z��� , �83�

which can be interpreted as Newton’s equation of motion of
a particle with unit mass, whose coordinate is � and where
the time corresponds to x. Hence, this equation can be solved
via standard methods of classical mechanics �19�. The result
is given by

� =
2

z
ln cos�s

x

a
� , �84�

c�x� =
2

z2

s2

a2cos−2�s
x

a
� , �85�

where the parameter s is related to A via 2s2=Az2a2. The
surface charge density is given by

� = �d�

dx
�

x=a
= −

2

z

s

a
tan s , �86�

therefore, s can be obtained by solving a simple nonlinear
equation numerically.

The algorithm presented can be used to solve this one-
dimensional problem. The planes are placed in the periodic
box of size l1� l2� l3 at x1= �a. The amount of fixed
charges, Ze, is distributed homogeneously in the planes, so
that the surface charge density is �=Ze / �2l2l3�. The corre-
sponding counterions are first distributed homogeneously in
the region between the planes. The simulation box in x1 di-
rection is somewhat larger than 2a, in order to be able to

implement periodic boundary conditions in this direction.
Beyond the charged planes, both the concentration and the
electric field vanish. Due to the periodic boundary conditions
in x2 and x3 direction, the system is translationally invariant
in these directions and hence the solution is one dimensional.

The calculations were performed for l1= l2= l3=32�0, a
=15�0, Z=60, and different grid sizes. The agreement be-
tween the simulation and the analytic expression is quite
good, see Fig. 1, and increases with the grid resolution in the
x direction. Increasing the grid resolution in the orthogonal
directions has no effect, as expected �see Fig. 1, lower part�.
Figure 2 shows the relative error for different resolutions,
defined by

relative error = � ca�x� − cnum�x�
ca�x�

� , �87�

where ca�x� denotes the counterion concentration from the
analytic solution and cnum�x� is the numerical result.

B. Colloidal particle in a box

In this case a colloidal particle, modeled by a sphere of
radius r, is placed at the center of the periodic box of size
l1� l2� l3. The sphere carries a total charge of Ze uniformly
distributed over its surface. In the simulation, the fixed
charges must be interpolated onto the nodes of the grid. The
simplest way is to generate M �1 random points distributed
uniformly over the sphere surface. For each point, a �vol-
ume� charge density of Ze / �MV� is added to the closest
grid node. These nodes are marked as fixed.

The calculations were performed for a cubic box of sides
l1= l2= l3=30�0. Grids with cubic symmetry and various
resolutions were used. A colloidal sphere of radius r=3�0
and valence Z=60 was placed at the center of the box and
the counterions were initially distributed uniformly over the
outer space.

Two independent versions of the algorithm were imple-
mented, one in C++ �20� and another one in C. Runs for
grids of different sizes were done on an Intel Core 2 Duo
E6600 FSB 1066 2�2.4 GHz, with 4 GB RAM. The algo-

TABLE I. Performance data for our two basic implementations.

Grid resolution

Code A �C++� Code A �C++� Code B �C� Code B �C�
Time

�s�
Memory

�%�
Time

�s�
Memory

�%�

32�32�32 30 0.2 30 0.1

64�64�64 836 0.5 844 0.5

128�128�128 20701 2.9 20574 3.6

256�256�256 381371 22.5 389030 24.4

Iterations Functional Iterations Functional

32�32�32 642 1114.83 634 1113.88

64�64�64 2265 1024.14 2226 1024.19

128�128�128 7206 957.63 7038 957.63

256�256�256 20323 923.85 19711 924.70
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rithm was run until the change in the functional reached a
value smaller than 10−8. Performance results are summarized
in Table I.

The pictures in Fig. 3 show a two-dimensional cut of the
counterion concentration in a plane perpendicular to the z
axis, while in Fig. 4 one-dimensional cuts �along the x direc-
tion of the simulation box� are shown. The data show that
near the surface of the charged colloid the discretization ef-
fects due to the cubic grid are quite large; nevertheless the
data for the 2563 grid seem reasonably well converged to the
continuum limit. The concentration profiles in �100� direc-
tion and in �111� direction are very close �i.e., within the
resolution of the plot the curves coincide—these data have

however not been included for the sake of clarity of the plot�.
Therefore one should expect that the solution is essentially
identical to one obtained with strict spherical symmetry. This
is indeed the case, as a comparison of the concentration pro-
file with the corresponding solution of the spherically sym-
metric Poisson-Boltzmann cell model shows �see Fig. 4�.

In the latter, the cubic simulation cell is replaced by a
spherical cell of the same volume and the Poisson-
Boltzmann equation is solved for the radial coordinate. In
our calculations, this was done by transforming Eq. �8� to
spherical coordinates and then to a set of two coupled first-
order differential equations �one for the potential, one for the
field�. This set was solved by a simple integrator analogous
to the velocity Verlet scheme known from molecular dynam-
ics �21�, using a step size of r=10−4 �in reduced units�, and
integrating from the colloid radius outward. The constant A
appearing in Eq. �8� was determined self-consistently by a
shooting procedure, using the requirement that the electric
field must vanish at the outer radius, as a result of Gauss’ law
and the overall charge neutrality. The thus-determined profile
agrees quite well with the one obtained from our algorithm
for the finest resolution.

Nevertheless, the solution for the cubic geometry does
exhibit some anisotropy that, by construction, is absent in the
cell model. This is essentially invisible in the concentration
profile, but clearly observable in the electric field profile, as
shown in Fig. 5, where the decays in �100� and �111� direc-
tion are compared.

In the immediate vicinity of the colloidal surface, one
may view the geometry as effectively planar. For a planar
surface, the solution is characterized by the so-called Gouy-
Chapman length �22�. In our reduced units, this length has
the value 0.044, which should be compared to the colloid
radius �0.5728� and the lattice spacing �0.045 for the 1283

grid�. The planar solution is shown in Fig. 4 �dash-dotted
line�; it also agrees reasonably well with the profiles from
our algorithm. Altogether, the data indicate that a lattice
spacing of roughly half a Gouy-Chapman length is small
enough to yield a reasonably well converged solution.

IV. SPEEDUPS

As one sees from Table I, the number of necessary itera-
tions and the amount of CPU time are quite large. We have
therefore looked for strategies to speed up the procedure
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without sacrificing the basic formulation that provides intrin-
sic stability. One possibility is to remove the rotational com-
ponent of the electric field not by means of plaquette moves
but rather by solving the Poisson equation. Within the chosen
discretization scheme, the electrostatic potential needs to be
an object associated with the sites such that the electric field
on a link is obtained by simply taking the potential difference
between the adjacent sites. This leads to the simplest possible
finite-difference scheme for the Poisson equation, which can
be solved efficiently and in a stable way by using a fast
Fourier transform �FFT� and the appropriate lattice Green’s
function �23�. This has the advantage that one single lattice
sweep not only reduces the rotational component �as is the
case for the plaquette moves� but rather eliminates it com-
pletely. Therefore the FFT promises to increase the conver-
gence speed. An easy implementation is possible using the
well-known and efficient FFTW3 library routine �24�. It
should be noted that the link moves, which update the con-
centrations and the fields simultaneously, remain unchanged,
such that the procedure still stays strictly on the constraint
surface.

In a first implementation, we eliminated all plaquette
moves and replaced them with FFT sweeps done during ini-
tialization as well as subsequently after every 25th link
sweep. As seen from Table II, this improves the efficiency
roughly by a factor of 1.1…2. These results were obtained on
the same computer as those of Table I.

Furthermore, we can tackle the slowdown that comes
from the fact that the ions have to be moved by site-by-site
hops throughout the system �“hydrodynamic slowing
down”�. To this end, we first run the calculation on a rather
coarse grid �in practice, we started with 8�8�8� such that
most of the necessary “mass transport” is already done in
that preliminary run. Starting from there, we go to a finer
grid �in practice, we reduced the lattice spacing in all three
directions by a factor of 2� and linearly interpolate the output
of the previous run onto that grid. Then the free energy is
relaxed again; the output of that run is interpolated onto a yet
finer grid and so on. Obviously, this can be done rather easily
by a straightforward recursion, until the desired grid reso-
lution is reached. The runs before the finest resolution may
then be viewed as a “preconditioner.” This optimization
yields another speedup by roughly 25% as seen from Table
II.

These are obviously two rather simple optimizations,
which do not interfere with the basic data structure of the

simple Cartesian grid. Further optimizations, which are how-
ever much more complicated, are possible by �i� adaptive
mesh refinement �i.e., a fine resolution is only used in those
regions where the fields vary strongly� and �ii� using finite-
element-type unstructured grids. Such more advanced ap-
proaches would be based upon constructing the dual
�Voronoi� lattice in order to define and calculate the fluxes.
While this is expected to yield further substantial speedups,
this was not attempted here and is rather mentioned as a
suggestion for the larger community.

V. CONCLUDING REMARKS

Variational techniques were used to develop an algorithm
for the Poisson-Boltzmann equation. The required amount of
memory scales linearly with the system size. In our first
simple implementation, all moves are local. This leads to fast
memory access and fast calculations at each move. Further-
more, the algorithm can be easily parallelized. On the other
hand, the charges need time to move between distant nodes.
In fact, while the time spent on each move is essentially
constant, the total number of sweeps required depends highly
on how large a grid is swept. Considerable speedups were
possible by using FFTs and a hierarchical preconditioner, but
the basic “hydrodynamic slowing down” remains still
present. Further speedups are likely to be possible by adap-
tive mesh refinement and by using unstructured grids.

Existing algorithms based on standard discretizations of
the differential operators are probably significantly faster
than even the fastest of our current implementations. Never-
theless, the approach that we have outlined in the present
paper has the inherent advantage that its mathematical for-
mulation provides intrinsic stability. This is mainly due to
the fact that the free-energy functional is formulated in terms
of the electric field instead of the electrostatic potential,
which provides a search for a true minimum in function
space, rather than for a saddle point. As a result, the algo-
rithm is very robust, in the sense that it will always converge
to the solution and at every iteration it approaches the solu-
tion more closely. Furthermore, the essential conservation
laws that are at the heart of electrostatics—conservation of
mass and conservation of electric flux—are built into the
formulation with machine accuracy. We believe that these are
fundamental advantages directly related to the underlying
physics of the problem and we consider them as much more

TABLE II. Performance data for our two speeded-up implementations. Note that the data for the runs with
preconditioner mean �i� CPU time for the overall procedure and �ii� number of iterations in the final run with
the finest resolution.

Grid resolution

Pure FFT Pure FFT FFT+preconditioner FFT+preconditioner

Time
�s�

Number of
iterations

Time
�s�

Number of
iterations

32�32�32 14 297 11 242

64�64�64 409 1150 331 888

128�128�128 12180 4427 9744 3421

256�256�256 354783 16766 273538 12430
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important than implementation details. The Maggs formula-
tion provides a different way of thinking about electrostatics
and we hope that this, in combination with existing numeri-
cal “technology,” will in the future bring about very useful
algorithms.
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